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ABSTRACT

In this paper we extend the class of Bayesian coordination games to
include explicit observation and communication. This general class
of problems includes the canonical multi-door multi-agent Tiger
problem. We argue that this class of games is appropriate for sit-
uations where the agents observation, communication and payoff—
earning actions are limited by some common resource, without in-
troducing arbitrary penalties for communicating (unlike most ex-
isting approaches).
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1. INTRODUCTION

Information is central to coordination in partially observable multi—
agent systems. That is, by observing the world and communicating
their beliefs, agents can better coordinate their actions to achieve
their goals. However, in many real-world problems, information
gathering and communication are not free. Rather, they are subject
to restrictions on availability, bandwidth or timing, or must be car-
ried out at the expense of some other action. Consequently, agents
must reason over the costs and benef ts of an observation and com-
munication policy, and its effects on other agents’ decision (i.e. the
policy’s stability) before utilising it. We argue that these activities
should be treated like any other action: they consume scarce re-
sources that then cannot be used to perform other actions, but may
confer some benef't to the agent. As such, the costs and benef ts of
gathering information and communicating can be better expressed
as the value of their effects on the agents’ chances of achieving
underlying goals rather than using arbitrary costs.

In this paper, we use the representation of communication from
decentralised POMDPs (e.g. [3], [2]) to develop a framework for
valuing observations and communication in a new class of games
— iterated Bayesian Coordination games with explicit observing
and communicating actions. Here, agents can request observations
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or communicate to ref ne their view of the world before they com-
mit to any action within the game. As a result, agents can reason
about coordinating by individually identifying the state or by using
communication to share each others’ beliefs about the world. How-
ever, depending on the relative costs of communication and observ-
ing, each policy will be appropriate in different contexts. This rea-
soning is not possible in traditional Bayesian games because they
ignore costly communication and information gathering: Further-
more, traditionally, the Bayesian games considered are not large
enough to warrant an information gathering strategy, and commu-
nication and information gathering are not considered. In contrast,
our model captures a broad class of problems, including a multi—
door multi—agent extension of the Tiger problem [1].

2. BAYESIAN COORDINATION GAMES

A noncooperative game consists of a set of agents N = 1,...,n,
and for each agent i € N, a set of strategies S; = {1,...,m;}, and
a utility function uj : S — R, where S = U!\‘:lSi. A joint strat-
egy profle s* € S is a Nash equilibrium (NE) if for all agents,
ui(si,s*;) —ui(si,s*;) > 0V sj. Bayesian games model situations
where agents have to act without knowing the true state of the world
These are noncooperative games with the addition of a state space
Q, and for each player i € N : a set of possible types ©j, a sig-
nal function &; : Q — ©;, and a prior belief about the state of the
world and the payoffs for each action. Here, o € Q is interpreted
as a particular “state of nature”, and associated with each state is
a particular stage game, defning all the agents’ types. Then, an
agent’s utility function, Uj : S x Q — R, maps from strategy prof les
and states (types) to its payoffs. The signal function maps from
states to types, such that {j(®) = 6; is the type of player i in state
o. Finally the conditional probability pj(®|6;) summarises what i
believes about the state of nature given its own type.

Following this, we are particularly interested in agent coordi-
nation, so we focus on coordination games. In these games, co-
ordination results in a high payoff to the agents, while any mis—
coordination leads to a low payoff. Specif cally: (i) Each agent has
the same size stratefgy space m;j = m for all i; (ii) Strategies can be
ordered such that ' = (I,...,1) is a strict NE for all | = 1,...,m;
(i) Foralli, j € N and all h,1 = 1,...,m, uj(s") > uj(s") if and only
ifuj(s") > uj(s"); (iv) u(s!) >>u(s) foralls € S/{s',...,s™}. Im-
portantly, these constraints imply that in a Bayesian coordination
game, different states only def ne different rankings of the NE.

2.1 Iterated Bayesian Coordination Games

As mentioned above, our domain differs from the standard model of
Bayesian games in two important ways, both of which allow agents
to coordinate by achieving a similar view of the world. First, agents
can explicitly choose to make observations of the world’s state,
which causes their beliefs to converge because they access the same
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Figure 1: A two—player, two state Bayesian coordination game with ex-
plicit observation and communication, where a > b > ¢ < d. When the
state is | (left), the NE {U, L} is preferred over {D,R}, while when  =r
(right), the opposite is the case.

observation function and are more likely to take the high payoff ac-
tion. Second, the agents can directly communicate (broadcast) their
beliefs over the state of the world to each other. Furthermore, in our
model, both of these actions take time. This is a key feature, and
allows us to model more general problems in which communica-
tion consumes resources like any other action. Now, because there
are only a fnite number of time steps in the repeated game, the
choice to observe or communicate must be made at the expense of
forgoing a payoff—earning action. That is, the value of observing
the state or communicating one’s beliefs must be traded—off against
the value of taking a less informed action.

Formally, we consider a Bayesian coordination game with the
addition of explicit, time—consuming observing (O) and communi-
cating (C) actions, repeated a fnite number of times. An agent’s
utility function is the sum of its payoffs from each stage—game. In
the stage—games, the payoffs to O and C are zero, regardless of
the actions of other players in the game. In the two—player version
of the game, if one agent plays O or C, we defne the payoff for
the second agent that takes the payoff-dominant equilibrium policy
(e.g. U or L in ® = 1) as some fraction, 0 < & < 1, of its equilib-
rium payoff. If the second agent takes a different policy, it receives
the payoff for mis—coordinating. For the two—agent two—state case,
these stage game payoffs are summarised in Fig 1 for @ = | (cor-
responding to the payoff-dominant equilibrium at {U,L}), where
a>0>c,a>band0 <3 < 1. Note that when the column player
plays O or C, the payoff to the row player for playing the payoff—
dominant equilibrium policy U is da, and when it plays D it is C.

Finally, we introduce the concept of time by considering the f -
nite iterated version of the game. This is a structured way of for-
mally def ning the opportunity costs of actions — each action takes
a time—step and it is not possible to conduct several actions in par-
allel. The level of noise in the signal function, € (i.e. Pr({ =) =
1 —e, with 0 < € < 1) is constant throughout. Now, in a fnitely
repeated game, the appropriate payoff function is the undiscounted
sum of agents’ payoffs, which is equivalent to maximising the aver-
age payoff per time—step. As such, we reduce the problem of f nd-
ing a payoff-dominant equilibrium in the repeated game to f nding
one in the stage—game.

2.2 The Structure of the Auxiliary Game

Here, we describe how to build an auxiliary game representing the
value of different communication protocols from the Bayesian co-
ordination game. To begin, we can considerably collapse the set
of policies admitted for all cases. This is done by, frst, def ning
expected rewards for policies in terms of whether an agent’s beliefs
tend towards the true state of the world or not. Second, we as-
sume that when an agent takes a payoff generating action (i.e. not
O or C) it takes the action with the highest expected reward given
its beliefs. This allows us to reason over all the payoff generating
actions as one, abstract ‘act’ action, which we write as A. For ex-
ample, in Fig 1, A for the row player is the act of moving up or
down in response to its beliefs, and not specif cally U or D. Third,
in general, an agent’s policy may be any combination of O and C
actions followed by A, with the game resetting after this action. As
such, we consider only policies which conclude with an A and do

1462

A OA OCA OO0OA OMCA O™OA
A FAR RG] () Flas)  lof) Flofo)
oa | o w@) w@) @) (@) (20
Qa0 0 ) og) - mgie) ol
O0A 0 0 w3y m(3em) - mgmen)  lomon)
oAl 0000 e s
oron | 0000 (Gl <)

Figure 2: Generic payoff table for row player in the 2—player auxiliary
game

not contain multiple As, as all other strategies can be constructed
by combining these strategies, so they are redundant. Furthermore,
we do not allow the agents to make any additional observations
after communicating — they always act immediately after commu-
nicating because communicating more than once makes earlier Cs
redundant and for a fxed strategy length, communicating later al-
ways dominates communicating earlier, because more information
is transferred. Therefore, a single C immediately before A domi-
nates all other combinations containing one or more Cs. Thus, we
can restrict the agent’s policy to the following combinations of ac-
tions: (i) Observe m times and then act, (e.g. A or OOA), or (ii)
Observe m times, communicate and then act (e.g. OCA). Observ-
ing m times means using a search strategy of length m.

Now that we have reduced the set of policies that need to be
considered, we can derive the expected rewards to agents for fol-
lowing combinations of these policies. Specif cally, the interaction
of agents’ policies is described as a normal form auxiliary game (a
higher level game describing a game). Each outcome of this auxil-
iary game def nes a combination of the agents’ A, O and C policies.
The value of the payoff to an agent for an outcome in the auxiliary
game is the average expected payoff per time—step that the agent
receives in the underlying Bayesian coordination stage game. We
denote this value as 7;(a;,aj), and it is given by the expected re-
ward E[uj(aj,aj)] (derived in the coming section) divided by the
length of its corresponding policy:

E[ui(ai,a;j)]

mi(aj,aj) = —————2
@30 = inglail.Jay )

Q)
where |aj| is the length of agent i’s policy. Furthermore, we can
drop the agent index on m because the expected payoffs to all
agents are symmetric. In the case of two agents, Fig 2 illustrates
the generic payoff matrix to the row agent.

3. FUTURE WORK

By comparing the relative costs and benef'ts of communicating,
observing and acting given an agent’s beliefs, we hope to show that
the optimal communication policy is a symmetric Nash equilib-
rium. Moreover, the framework described here allows us to specify
and analyse general information gathering strategies, and to do so
independently of the environment they operate in. In future work,
we will use this framework to derive a general method for gener-
ating optimal communication policies in iterated Bayesian coordi-
nation games with explicit communication and observation, using
different observation—gathering strategies.
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